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Abstract— Line-of-sight graph is used to check the number 

of short circuit testing needed to test a printed circuit board. 
This paper presents a simple algorithm based on some 
assumptions to put color in a circuit dual hypergraph of a 
VLSI circuit. The structures of line-of-sight graphs with 10, 11, 
12 and 13 colors have been established. This algorithm can be 
used to find out number of short circuit testing needed for a 
VLSI printed circuit board. 
 

Index Terms— Line-of-sight graph, short circuit testing, 
VLSI circuit, circuit dual hypergraph.  
 

I. INTRODUCTION 
  Graphs are used in different areas in computer science. 
Circuit dual hypergraphs are used to represent a circuit using 
a graph. A special type of these graphs have been 
represented which shown their possible placement in the 
printed circuit board [10]. These types of circuit dual 
hypergraphs are placed in the printed circuit board 
considering an algorithm [11]. This algorithm has been 
considered for the planar triangulated graphs. It has been 
found that the graph coloring is used in many applications 
like scheduling and assignment problems [3]. An undirected 
graph G {V, E} can be colored using vertex coloring and 
edge coloring. A (vertex) coloring of a graph G is a mapping 
c : V(G) -> S. The elements of S are called colors; the 
vertices of one color form a color class. If |S| = k, we say that 
c is k-coloring (often we use S = {1, …, k). A coloring is 
proper if adjacent vertices have different colors. A graph is 
k-colorable if it has a proper k-coloring. The chromatic 
number c(G) is the least value of k such that G is k-colorable. 
Obviously, λ(G) exists as assigning distinct colors to 
vertices yields a proper |V(G)|-coloring. An optimal coloring 
of G is a λ(G)-coloring. A graph G is k-chromatic if λ(G) = 
k. Obviously, the complete graph Kn requires n colors, so 
λ(Kn) = n. Then λ(G) ≥ ω(G) where ω(G) is the weight of the 
graph G. This bound can be tight, but it can also be very 
loose. Indeed for any given integers k ≤ l, there are graphs 
with clique number k and chromatic number l [12]. General 
graph coloring algorithms are well known and have been 
extensively studied by the researchers [5, 6]. A graph has 
been colored, considering the vertex with minimum degree 
first [2]. Then the graph considered will contain all the 
vertices excluding already considered vertex. Many 
algorithms have been found for graph coloring. Amongst 
them first fit and degree based ordering techniques are 

placed. First Fit algorithm is the easiest and fastest 
technique of all greedy coloring heuristics. The algorithm 
sequentially assigns each vertex the lowest legal color. This 
algorithm has the advantage of being very simple and fast 
and can be implemented to run in O(n)[8,9]. Degree based 
ordering provides a better strategy for coloring a graph. It 
uses a certain selection criterion for choosing the vertex to 
be colored. This strategy is better than the First Fit which 
simply picks a vertex from an arbitrary order. Some 
strategies for selecting the next vertex to be colored have 
already been proposed and remind us as follows: 
a. Largest degree ordering (LDO): It chooses a vertex with 

the highest number of neighbors. Intuitively, LDO 
provides a better coloring than the First Fit. This heuristic 
can be implemented to run in O(n2)[8,9]. 

b. Saturation degree ordering (SDO): The saturation degree 
of a vertex is defined as the number of its adjacent 
differently colored vertices. Intuitively, this heuristic 
provides a better coloring than LDO as it can be 
implemented to run in O(n3)[8,9].  

c. Incidence degree ordering (IDO): A modification of the 
SDO heuristic is the incidence degree ordering. The 
incidence degree of a vertex is defined as the number of its 
adjacent colored vertices. This heuristic can be 
implemented to run in O(n2)[8,9]. 
The applications of graph coloring are found in Guarding 

an Art Gallery, Physical Layout Segmentation, 
Round-Robin Spots Scheduling, Aircraft Scheduling, 
Biprocessor Tasks, Frequency Assignment, Map Coloring 
and GSM Mobile Phone Networks [16, 17] etc. Graph 
coloring is also used for short circuit testing in VLSI 
physical design.  
 
II. ALGORITHM TO COLOR A CIRCUIT DUAL GRAPH TO 

GET A LINE-OF-SIGHT GRAPH 
In large PCBs like VLSI, the modules are placed in 

priority wise while designing them. First few modules 
placed and connections are made among them. Then they are 
checked for short circuits. After taking care of the problems 
arise in this already placed and connected modules, as the 
next step, few more modules will be placed. Connections 
will be made among the newly placed modules and the 
modules placed in the first phase. Again all sorts of testing 
will be done on this second phase modules including short 
circuit testing. This process will be repeated phase-wise till 
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all the modules are placed in the board and desired 
connections are established among them. Each and every 
module is utilized to its maximum. 

 
Graph coloring algorithms focused before, as some are 

stated above, have not been considered the method of 
coloring for a line-of-sight graph which has been discussed 
here. Therefore, the number of colors needed to color the 
line-of-sight graph, as derived by those graph coloring 
algorithms, will be different from the actual number of 
short-circuit testing needed in physical design time in VLSI 
physical design. 

 
Considering this concept, an algorithm has been 

established to color a circuit dual graph to get the actual 
number of short-circuit testing needed to design a circuit 
from it as followings. 

 
A. Algorithm to color the circuit dual graph 

Step 1: Consider the priority assigned to the circuits 
(vertices) of the board (circuit dual graph). 

Step 2: Place the modules on the board based on priority 
basis. Highest priority modules will be placed in 
the first phase. Connect these modules as desired.  

Step 3: Put color on these modules accordingly to get the 
respective line-of-sight graph. Find out the number 
of short circuit testing needed. 

Step 4: In the second phase, place the next highest priority 
modules. Repeat step 2 and 3. Total number of 
short circuit testing needed is same as the number 
of colors needed for the resulting line-of-sight 
graph. 

Step 5: Repeat step 2 – 4 till all the modules are placed on 
the board to get the final line-of-sight graph for that 
circuit dual graph.  

Step 6: The total number of colors used to color the circuit 
dual graph is the actual number of short circuit 
testing needed to physically design the VLSI circuit. 

Since it has been known that numerous modules are placed 
in VLSI printed circuit board. Therefore, it is not possible to 
place all the modules in one time, to make the connections 
among them and then test for short-circuit. The VLSI 
designers opt for a process where they place the modules in 
phase-wise manner. While using the circuits, designer 
always utilize one circuit to its optimum level. So, in phase 
manner, the VLSI designers design the whole board and 
give them for physical design. Therefore, the total number of 
short-circuit testing may be different from the number of 
colors shown by different algorithms placed earlier. 
 
B. Proof: 
We are considering the following circuit dual graph G(74, 

214) in figure 1 to apply the given algorithm. Numbers 
given for the vertices are the priority given to each of these 
modules. Highest priority modules will be placed in the first 
phase. Priorities are in decreasing order of 1, 2, … .   

 
Figure 1: A circuit dual graph G (74, 214) 

 
Step 1: The priorities of each of these modules are shown 
inside each vertex using numbers. Lower the number higher 
is the priority. 
Step 2: All the modules with priority 1 & 2 are placed on the 
board and give the connections as desired.  
Step 3: As per the connection, we can place it on the board 
and put color in it as shown below in figure 2: 

 
Figure 2: Line of sight graph of figure 1 after placing 

priority module 1 
 

Step 4: The following figure 3 is obtained after going 
through step 4. 

 
Figure 3: Line of sight graph of figure 1 after placing 

priority module 1 & 2 
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Step 5:  
1st Repetition: Figure 4 after 1st repetition: 

 
Figure 4: After placing modules with priority 1, 2 & 3 

 
 
2nd Repetition: Figure 5 after 2nd repetition: 

 
Figure 5: After placing modules with priority 1, 2, 3 & 4 

 
 
3rd Repetition: Figure 6 after 3rd repetition: 

 
Figure 6: After placing modules with priority 1, 2, 3, 4 & 5 
 
 
 

 
4th Repetition: Figure 7 after 4th repetition: 

 
Figure 7:After  placing modules with priority  

1, 2, 3, 4, 5 & 6 
 

5th Repetition: Figure 8 after 5th repetition: 

 
Figure 8:After  placing modules with priority  

1, 2, 3, 4, 5, 6 & 7 
 
 
6th Repetition: Figure 9 after 6th repetition: 

 
Figure 9: After placing modules with priority 1, 2, 3, 4, 5, 6, 

7& 8 
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7th Repetition: Figure 10 after 7th repetition: 

 
Figure 10: After placing modules with priority 1, 2, 3, 4, 5, 

6, 7, 8 & 9 
 
8th Repetition: Figure 11 after 8th repetition: 

 
Figure 11: After placing modules with priority 1, 2, 3, 4, 5, 

6, 7, 8, 9 & 10 
 
9th Repetition: Figure 12 after 9th repetition: 

 
Figure 12: After placing modules with priority 1, 2, 3, 4, 5, 6 

, 7, 8, 9, 10 & 11 
 
 
 

10th Repetition: Figure 13 after 10th repetition: 

 
Figure 13: After placing modules with priority 1, 2, 3, 4, 5, 6 

, 7, 8, 9, 10, 11 & 12 
 
11th Repetition: Figure 14 after 11th repetition: 

 
Figure 14: Line-of-sight-graph with 13 colors 

 
The structure of this graph G(74, 214) is as shown 

in Figure 15 below. 

 
Figure 15: 13 colored line-of-sight graph with degree of 

each vertex 
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It is found that the structure of the graph (Figure 15) has 1, 4, 
2, 2, 4, 1, 8, 8, 13, 13, 17, and 1 numbers of vertices with 
degree 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 respectively.  

 

C. Different structures found: 
We are finding out the structure of a series of 

line-of-sight-graph with ten (10), eleven (11) and twelve 
(12) colors following the assumptions of the above stated 
algorithm. 

 
i. Line-of-sight-graph with ten (10) colors: 
One possible structure of this graph is as in Figure 15a 

below as G1(27, 74). 

 
 

Figure 15a: 14 colored line-of-sight-graph 
It is found that the structure of the graph (Figure 17) has 4, 

1, 4, 2, 5, 6, and 5 numbers of vertices with degree 9, 8, 7, 6, 
5, 4, 3 respectively.  

 
The structure with mentioning the degree is as shown in 

Figure 15b G1(27, 74) below. 

 
Figure 15b: 10 colored graph with degree 

 
ii. Line-of-sight-graph with eleven (11) colors: 

 
 

Line-of-sight-graph with 11 colors is drawn as shown in 
Figure 16 G2(41, 113) below. 

 

 Figure 16: Line-of-sight-graph with 11 colors 
 

The structure of this graph G2(41, 113) is as shown in Figure 
17 below. 
 

 Figure 17: 11 colored line-of-sight graph with degree of 
each vertex 

 
It is found that the structure of the graph (Figure 17) has 4, 

1, 1, 7, 3, 8, 9, and 8 numbers of vertices with degree 10, 9, 
8, 7, 6, 5, 4, 3 respectively.  

iii. Line-of-sight-graph with twelve (12) colors: 
 
Line-of-sight-graph with 12 colors is drawn as shown in 

Figure 18 G3(53, 149) below. 
 

 
Figure 18: Line-of-sight-graph with 12 colors 

 

Bornali Gogoi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5047-5052

www.ijcsit.com 5051



The structure of this graph G3(53, 149) is as shown in 
Figure 19 below. 

 
Figure 19: 12 colored line-of-sight graph with degree of 

each vertex 
It is found that the structure of the graph (fig19) has 4, 1, 3, 

3, 6, 5, 9, 10, 11, and 1 numbers of vertices with degree 11, 
10, 9, 8, 7, 6, 5, 4, 3, 2 respectively. 
 

III. CONCLUSION 
This algorithm can be applied to test a VLSI circuit board 

for short circuit. The difference among the previously 
established algorithms and this one is the way of placing 
modules on the board. This algorithm follows phase-wise 
placement of modules which is practically used to design a 
VLSI circuit board. So, the number of colors needed to draw 
the line-of-sight graph in this paper is totally different from 
the previously established graph coloring algorithms. The 
above shown structures will need nC2 number of short circuit 
testing where n is the number of colors used if followed the 
assumptions as stated above. The same graph may give 
different color if followed the algorithm discussed in [14]. 
But considering the process used in designing a board in 
VLSI, we found these graphs will need 12 or 13 colors as 
shown in this paper.  
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